JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Crystal structure of an anti-CRISPR protein, AcrIIA1.

Nucleic Acids Research 2018 January 10
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide bacteria with RNA-based adaptive immunity against phage infection. To counteract this defense mechanism, phages evolved anti-CRISPR (Acr) proteins that inactivate the CRISPR-Cas systems. AcrIIA1, encoded by Listeria monocytogenes prophages, is the most prevalent among the Acr proteins targeting type II-A CRISPR-Cas systems and has been used as a marker to identify other Acr proteins. Here, we report the crystal structure of AcrIIA1 and its RNA-binding affinity. AcrIIA1 forms a dimer with a novel two helical-domain architecture. The N-terminal domain of AcrIIA1 exhibits a helix-turn-helix motif similar to transcriptional factors. When overexpressed in Escherichia coli, AcrIIA1 associates with RNAs, suggesting that AcrIIA1 functions via nucleic acid recognition. Taken together, the unique structural and functional features of AcrIIA1 suggest its distinct mode of Acr activity, expanding the diversity of the inhibitory mechanisms employed by Acr proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app