Add like
Add dislike
Add to saved papers

Identifying Structure in Short DNA Scaffolds Using Solid-State Nanopores.

ACS Sensors 2017 December 23
The identification of molecular tags along nucleic acid sequences has many potential applications in bionanotechnology, disease biomarker detection, and DNA sequencing. An attractive approach to this end is the use of solid-state nanopores, which can electrically detect molecular substructure and can be integrated into portable lab-on-a-chip sensors. We present here a DNA origami-based approach of molecular assembly in which solid-state nanopores are capable of differentiating 165 bp scaffolds containing zero, one, and two dsDNA protrusions. This highly scalable technique requires minimal sample preparation and is customizable for a wide range of targets and applications. As a proof-of-concept, an aptamer-based DNA displacement reaction is performed in which a dsDNA protrusion is formed along a 255 bp scaffold in the presence of ATP. While ATP is too small to be directly sensed using conventional nanopore methods, our approach allows us to detect ATP by identifying molecular substructure along the DNA scaffold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app