Add like
Add dislike
Add to saved papers

Stiffness Customization and Patterning for Property Modulation of Silicone-Based Soft Pneumatic Actuators.

Soft Robotics 2017 September
Soft pneumatic actuators (SPAs), as novel types of motion drivers for robotic devices, excel in many applications, such as rehabilitation and biomimicry, which demand compliance and softness. To further expand their scope of utilization, the SPAs should be customizable to meet the distinctive requirements of different applications. This article proposes a novel perspective on the SPA working mechanism based on stiffness distribution and then presents a versatile method called stiffness customization and patterning (SCP) for SPA body stiffness layout as a novel attempt to customize SPAs with distinctive properties. We fabricated a hybrid type of material combining unstretchable material and silicone with customizable aggregated elasticity. The tensile results showed that embedding unstretchable material directly increases the stiffness of the hybrid material sample, and our stress-strain model for SCP is able to adequately predict the elasticity of hybrid samples with specific material ratios. By applying this approach to bending-type SPAs, we are able to mitigate SPA buckling, a main failure mode of SPAs, and improve the SPA tip force by using hybrid material with globally increased stiffness. We also diversify bending modalities with different stiffness configurations in the hybrid material. SCP offers numerous ways to engineer SPAs for more applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app