Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Improved antifouling properties of photobioreactors by surface grafted sulfobetaine polymers.

Biofouling 2017 November
To improve the antifouling (AF) properties of photobioreactors (PBR) for microalgal cultivation, using trihydroxymethyl aminomethane (tris) as the linking agent, a series of polyethylene (PE) films grafted with sulfobetaine (PE-SBMA) with grafting density ranging from 23.11 to 112 μg cm-2 were prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). It was found that the contact angle of PE-SBMA films decreased with the increase in the grafting density. When the grafting density was 101.33 μg cm-2 , it reached 67.27°. Compared with the PE film, the adsorption of protein on the PE-SBMA film decreased by 79.84% and the total weight of solid and absorbed microalgae decreased by 54.58 and 81.69%, respectively. Moreover, the transmittance of PE-SBMA film recovered to 86.03% of the initial value after cleaning, while that of the PE film recovered to only 47.27%. The results demonstrate that the AF properties of PE films were greatly improved on polySBMA-grafted surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app