Add like
Add dislike
Add to saved papers

DNAzyme Based Nanomachine for in Situ Detection of MicroRNA in Living Cells.

ACS Sensors 2017 December 23
The capability of in situ detection of microRNA in living cells with signal amplification strategy is of fundamental importance, and it will open up a new opportunity in development of diagnosis and prognosis of many diseases. Herein we report a swing DNA nanomachine for intracellular microRNA detection. The surfaces of Au nanoparticles (NPs) are modified by two hairpin DNA. We observe that one DNA (MB2) will open its hairpin structure upon partial hybridization with target miR-21 after entering into cells, and the other part of its hairpin structure could further react with the other hairpin DNA (MB1) to form a Zn2+ -specific DNAzyme. This results in the disruption of MB1 through shearing action and the release of fluorescein Cy5. To provide an intelligent DNA nanomachine, MB2 is available again with the shearing action to bind with MB1, which provides effective signal amplification. This target-responsive, DNA nanomachine-based method showed a detection limit of 0.1 nM in vitro, and this approach could be an important step toward intracellular amplified detection and imaging of various analytes in living cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app