JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of polymeric carrier on the disposition and retention of 20(R)-ginsenoside-rg3-loaded swellable microparticles in the lung.

The objective of this study was to investigate the influence of differently charged biocompatible polymers, including chitosan (CS), hyaluronic acid (HA), and hydroxypropyl cellulose (HPC), on the disposition and retention of 20(R)-ginsenoside-rg3 (Rg3)-loaded swellable microparticles in the lung. A high-pressure homogenization method combined with spray drying was used to prepare Rg3-loaded microparticles. In vitro aerodynamic performance of different microparticles was characterized by the Next Generation Impactor (NGI). Retention of the swellable microparticles in the rat lung was investigated using bronchoalveolar lavage fluid method. Influence of drug loading, polymer molecular weight, and polymer charge on the properties of the swellable microparticles was investigated. It was found that drug loading had no significant influence on experimental mass median aerodynamic diameter (MMADe ) and fine particle fraction (FPF). Increasing polymer molecular weight caused no remarkable change in MMADe value, but the FPF value decreased with the increase of polymer molecular weight. At the same molecular weight level, polymer structure and charge had no statistical influence on the in vitro aerodynamic properties of the microparticles and lung disposition, but it influenced the swelling and bioadhesion behavior and therefore lung retention profile. Desirable phagocytosis escapement and inhibition of A549 cell proliferation were achieved for the developed swellable microparticles. In conclusion, the lung retention of swellable microparticles can be adjusted by selecting polymeric carriers with different structure and charge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app