Add like
Add dislike
Add to saved papers

Effectiveness of a Cocaine Hydrolase for Cocaine Toxicity Treatment in Male and Female Rats.

AAPS Journal 2017 November 28
Development of a truly effective medication for treatment of cocaine abuse has been a grand challenge. There is no FDA-approved therapeutic agent specific for cocaine addiction or overdose. An enzyme therapy using an efficient cocaine-metabolizing enzyme could be a promising treatment strategy for cocaine overdose and addiction. One of our previously designed cocaine hydrolases (CocHs), known as CocH1, was fused with human serum albumin (HSA) to prolong the biological half-life. The fusion protein CocH1-HSA is an investigational new drug (IND) approved by the FDA for clinical trials in cocaine addiction treatment, but not in cocaine overdose/toxicity treatment. In the present study, we aimed to evaluate the pharmacokinetic profile of CocH1-HSA and its effectiveness for cocaine toxicity treatment in male and female rats and demonstrate the clinical potential. The data demonstrate that enzyme CocH1-HSA has very similar pharmacokinetic profile in male and female rats. For both male and female rats, the enzyme can rapidly eliminate cocaine even if the cocaine dose is as high as 180 mg/kg (LD100 ). Based on the animal data, whenever the enzyme is given to a living subject, the remaining cocaine in the body will be converted rapidly to physiologically inactive metabolites and, thus, reverse the cocaine toxicity and help the subject to recover. So, an enzyme therapy using CocH1-HSA can effectively treat cocaine toxicity and prevent the subject from further damage by cocaine. The data obtained clearly demonstrate the promising clinical potential of CocH1-HSA in cocaine overdose treatment for both genders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app