JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD).

Analytical Biochemistry 2018 Februrary 2
The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app