Add like
Add dislike
Add to saved papers

Light energy transmission and Vickers hardness ratio of bulk-fill resin based composites at different thicknesses cured by a dual-wave or a single-wave light curing unit.

PURPOSE: To quantify light energy transmission through two bulk-fill resin-based composites and to measure the top to bottom surface Vickers hardness ratio (VHratio) of samples of various incremental thicknesses, using either a single-wave or dual-wave light curing unit (LCU).

METHODS: Tetric EvoCeram Bulk Fill (TECBF) and SonicFill (SF) were studied. Using MARC-RC, the irradiance delivered to the top surface of the samples 2, 3, 4 and 5 mm thick (n= 5 for each thickness) was adjusted to 800 mW/cm2 for 20 seconds (16 J/cm2) using either a single-wave, Bluephase or a dual-wave, Bluephase G2 LCUs. Light energy transmission through to the bottom surface of the specimens was measured at real time using MARC-RC. The Vickers hardness (VH) was determined using Vickers micro hardness tester and the VHratio was calculated. Data were analyzed using a general linear model in Minitab 16; α= 0.05.

RESULTS: TECBF was more translucent than SF (P< 0.05). The mean VHratio was higher than 80% in 2, 3 and 4 mm increment thickness for both materials (except for 4 mm TECBF when cured with the dual-wave Bluephase G2). SF showed significantly higher VH ratio than TECBF at all different thickness levels (P< 0.05), except at the 2 mm level (P> 0.05). TECBF showed significantly greater VH ratio when cured with the single-wave Bluephase than when using the dual-wave Bluephase G2 (P< 0.05).

CLINICAL SIGNIFICANCE: The transmission of light energy through to the bottom surface and the VHratio are material dependent. Although TECBF is more translucent than SF, it showed lower VHratio compared to SF when cured with dual-wave Bluephase G2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app