Add like
Add dislike
Add to saved papers

Early barriers to neonatal porcine islet engraftment in a dual transplant model.

Porcine islet xenografts have the potential to provide an inexhaustible source of islets for β cell replacement. Proof-of-concept has been established in nonhuman primates. However, significant barriers to xenoislet transplantation remain, including the poorly understood instant blood-mediated inflammatory reaction and a thorough understanding of early xeno-specific immune responses. A paucity of data exist comparing xeno-specific immune responses with alloislet (AI) responses in primates. We recently developed a dual islet transplant model, which enables direct histologic comparison of early engraftment immunobiology. In this study, we investigate early immune responses to neonatal porcine islet (NPI) xenografts compared with rhesus islet allografts at 1 hour, 24 hours, and 7 days. Within the first 24 hours after intraportal infusion, we identified greater apoptosis (caspase 3 activity and TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling])-positive cells) of NPIs compared with AIs. Macrophage infiltration was significantly greater at 24 hours compared with 1 hour in both NPI (wild-type) and AIs. At 7 days, IgM and macrophages were highly specific for NPIs (α1,3-galactosyltransferase knockout) compared with AIs. These findings demonstrate an augmented macrophage and antibody response toward xenografts compared with allografts. These data may inform future immune or genetic manipulations required to improve xenoislet engraftment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app