Add like
Add dislike
Add to saved papers

Statistical description of the denatured structure of a single protein, staphylococcal nuclease, by FRET analysis.

Structural characterization of fully unfolded proteins is essential for understanding not only protein-folding mechanisms, but also the structures of intrinsically disordered proteins. Because an unfolded protein can assume all possible conformations, statistical descriptions of its structure are most appropriate. For this purpose, we applied Förster resonance energy transfer (FRET) analysis to fully unfolded staphylococcal nuclease. Artificial amino acids labeled with a FRET donor or acceptor were introduced by an amber codon and a four-base codon respectively. Eight double-labeled proteins were prepared, purified, and subjected to FRET analysis in 6 M urea. The observed behavior could be explained by a power law, R = αN0.44 , where R, and N are the distance and the number of residues between donor and acceptor, and α is a coefficient. The index was smaller than the value expected for an excluded-volume random coil, 0.588, indicating that the fully unfolded proteins were more compact than polypeptides in good solvent. The FRET efficiency in the native state did not necessarily correlate to the distance obtained from crystal structure, suggesting that other factors such as the orientation factor made a substantial contribution to FRET.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app