Add like
Add dislike
Add to saved papers

Controlling the H to T' structural phase transition via chalcogen substitution in MoTe 2 monolayers.

New materials exhibiting reversible structural transitions are desired for a variety of applications, yet they are difficult to identify and stabilize. Monolayer MoTe2 has emerged as a good candidate as it displays a small energy difference between a semiconducting H and semimetallic T' phase; however, switching between the two phases is difficult. Here, we propose using chalcogen alloying to overcome this challenge. Using first principles density functional theory calculations, we investigate 7 MoTe2-x Xx alloys (X = N, P, Sb, F, Br, I, and Se) at three concentrations. We find that the energy difference between the H and T' phases is dependent on the chemistry, size, and concentration of the dopant atom, providing significant control over the stability of the two phases. From the thermodynamic stability of these compounds, we show that several can be stabilized under the appropriate experimental conditions. We also find that P-alloying enhances the chemical reactivity of the basal plane towards a variety of adsorbates. Finally, we show that mechanical strain makes it is easier to stabilize and dynamically switch between the two states than in unalloyed MoTe2 . Our results suggest that Te substitution in monolayer MoTe2 is a way to induce and control a reversible structural phase transition in this two-dimensional material system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app