Add like
Add dislike
Add to saved papers

Broad-scale redistribution of mRNA abundance and transcriptional machinery in response to growth rate in Salmonella enterica serovar Typhimurium.

Microbial Genomics 2017 October
We have investigated the connection between the four-dimensional architecture of the bacterial nucleoid and the organism's global gene expression programme. By localizing the transcription machinery and the transcriptional outputs across the genome of the model bacterium Salmonella enterica serovar Typhimurium at different stages of the growth cycle, a surprising disconnection between gene dosage and transcriptional output was revealed. During exponential growth, gene output occurred chiefly in the Ori (origin), Ter (terminus) and NSL (non-structured left) domains, whereas the Left macrodomain remained transcriptionally quiescent at all stages of growth. The apparently high transcriptional output in Ter was correlated with an enhanced stability of the RNA expressed there during exponential growth, suggesting that longer mRNA half-lives compensate for low gene dosage. During exponential growth, RNA polymerase (RNAP) was detected everywhere, whereas in stationary phase cells, RNAP was concentrated in the Ter macrodomain. The alternative sigma factors RpoE, RpoH and RpoN were not required to drive transcription in these growth conditions, consistent with their observed binding to regions away from RNAP and regions of active transcription. Specifically, these alternative sigma factors were found in the Ter macrodomain during exponential growth, whereas they were localized at the Ori macrodomain in stationary phase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app