Add like
Add dislike
Add to saved papers

Potassium Regulation in Medaka (Oryzias latipes) Larvae Acclimated to Fresh Water: Passive Uptake and Active Secretion by the Skin Cells.

Scientific Reports 2017 November 25
Molecular mechanisms of Na+ , Cl- , and Ca2+ regulation in ionocytes of fish have been well investigated. However, the regulatory mechanism of K+ in fishes has been largely unknown. In this study, we investigated the mechanism of K+ regulation in medaka larvae acclimated to fresh water. Using a scanning ion-selective electrode technique (SIET) to measure the K+ fluxes at skin cells, significant K+ effluxes were found at ionocytes; in contrast, significant K+ influxes were found at the boundaries between keratinocytes. High K+ water (HK) acclimation induced the K+ effluxes at ionocytes and suppressed the K+ influxes at keratinocytes. The K+ effluxes of ionocytes were suppressed by VU591, bumetanide and ouabain. The K+ influxes of keratinocytes were suppressed by TAP. In situ hybridization analysis showed that mRNA of ROMKa was expressed by ionocytes in the skin and gills of medaka larvae. Quantitative PCR showed that mRNA levels of ROMKa and NKCC1a in gills of adult medaka were upregulated after HK acclimation. This study suggests that medaka obtain K+ through a paracellular pathway between keratinocytes and extrude K+ through ionocytes; apical ROMKa and basolateral NKCC1a are involved in the K+ secretion by ionocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app