Add like
Add dislike
Add to saved papers

Membrane insertion of the BAX core, but not latch domain, drives apoptotic pore formation.

Scientific Reports 2017 November 25
Despite intensive research effort, how the paradigmatic proapoptotic protein BAX forms lethal apoptotic pores at the mitochondrial outer membrane (MOM) remains incompletely understood. Here, we used biophysical tools and minimalist model systems to identify the specific regions in BAX driving apoptotic pore formation, and to gain more insight into underlying mechanisms. Fluorescence mapping revealed that fully active BAX adopts a BH3-in-groove dimeric conformation in MOM-like membranes, with BAX α4-α5 helices belonging to its core domain inserting deeper into the membrane lipid bilayer than BAX α6-α8 helices belonging to its latch domain. In our reconstituted systems, antiapoptotic BCLXL formed canonical heterodimeric BH3-in-groove complexes with BAX, and blocked membrane insertion of BAX core α4-α5 helices, but not BAX latch α6-α8 helices. Moreover, poly(ethylene glycol) (PEG) conjugation (PEGylation) at multiple individual sites along the BAX core, but not latch domain, potently inhibited BAX pore-forming activity. Additional combined computational and experimental evidence revealed that the BAX core α5 helix displays a bilayer-destabilizing membrane interaction mode that is absent in BAX latch α6-α8 helices. Based on this collective set of evidence, we propose that membrane insertion of the BAX core, but not latch domain, is critical for BAX apoptotic pore formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app