Add like
Add dislike
Add to saved papers

Chemical nanocavitation of surfaces to enhance the utility of stainless steel as a medical material.

While stainless steel is a broadly used alloy with interesting mechanical properties, its applications in medicine suffers from inherent biocompatibility limitations. An attractive opportunity to improve its performance is to alter its surface, but this has proven challenging. We now show how high range anodization conditions using H2 SO4 /H2 O2 as an atypical electrolyte can efficiently nanocavitate the surface of both stainless steel SS304 and SS316 and create a topography with advantageous biomedical characteristics. We describe the structural and chemical features of the resulting surfaces, and propose a nanocorrosion/transpassivation/repassivation mechanism for its creation. Our approach creates a thin mesoporous layer of crystalline oxide that selectively promotes mammalian cell activity and limits bacterial adhesion. The modified surfaces favor the formation and maturation of focal adhesion plaques and environment-sensing filopodia with abundant extra small lateral membrane protrusions, suggesting an increase in membrane fluidity. These protrusions represent a yet undescribed cellular response. Such surfaces promise to facilitate the integration of implantable SS devices, in general. In addition, our strategy simultaneously provides a simple, commercially attractive way to control the adhesion of microorganisms, making nanostructured stainless steel broadly useful in hospital environments, in manufacturing medical devices, as well as offering possibilities for non-medical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app