Add like
Add dislike
Add to saved papers

Delivery of NF-κB shRNA using carbamate-mannose modified PEI for eliminating cancer stem cells.

The presence of cancer stem cells (CSCs) is one of the main reasons that cause cancer relapse and metastasis. In this study, NF-κB shRNA was delivered to target CSCs using carbamate-mannose modified PEI (CMP) as a non-viral gene vector. The polymer was synthesized by blocking primary amine groups of branched PEI (10kDa) through nucleophilic addition between PEI and protected mannose-functionalized cyclic carbonate, followed by mannose deprotection. CMP/control shRNA nanocomplexes showed lower cytotoxicity and higher transfection efficiency in 4T1 murine breast cancer cells than unmodified PEI/control shRNA nanocomplexes. Importantly, CMP/NF-κB shRNA nanocomplexes (CMPN) were capable of inhibiting migration and invasion, decreasing mammosphere and colony formation and lowering ALDH+ CSC population. Furthermore, CMPN not only induced apoptosis and inhibited cell proliferation, but also sensitized the cells to the treatment with doxorubicin-loaded micellar nanoparticles. Therefore, CMPN may provide a promising approach for eliminating CSCs to prevent cancer relapse and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app