Add like
Add dislike
Add to saved papers

Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models.

Rapid urbanization and economic growth has led to significant increase in municipal solid waste generation in India during the last few decades and its management has become a major issue because of poor waste management practices. Solid waste generated is deposited into open dumping sites with hardly any segregation and processing. Carbon dioxide (CO2 ), methane (CH4 ) and nitrous oxide (N2 O) are the major greenhouse gases that are released from the landfill sites due to the biodegradation of organic matter. In this present study, CH4 and CO2 emissions from a landfill in north-east India are estimated using a flux chamber during September, 2015 to August, 2016. The average emission rates of CH4 and CO2 are 68 and 92 mg/min/m2 , respectively. The emissions are highest in the summer whilst being lowest in winter. The diurnal variation of emissions indicated that the emissions follow a trend similar to temperature in all the seasons. Correlation coefficients of CH4 and temperature in summer, monsoon and winter are 0.99, 0.87 and 0.97, respectively. The measured CH4 in this study is in the range of other studies around the world. Modified Triangular Method (MTM), IPCC model and the USEPA Landfill gas emissions model (LandGEM) were used to predict the CH4 emissions during the study year. The consequent simulation results indicate that the MTM, LandGEM-Clean Air Act, LandGEM-Inventory and IPCC models predict 1.9, 3.3, 1.6 and 1.4 times of the measured CH4 emission flux in this study. Assuming that this higher prediction of CH4 levels observed in this study holds well for other landfills in this region, a new CH4 emission inventory (Units: Tonnes/year), with a resolution of 0.10  × 0.10 has been developed. This study stresses the importance of biodegradable composition of waste and meteorology, and also points out the drawbacks of the widely used landfill emission models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app