Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Detection of AmpC β-lactamase-producing Gram-negative bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

BACKGROUND: Rapid detection of AmpC-producing strains of Gram-negative bacteria is beneficial for patient care. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a novel method that has demonstrated the resistance of a strain to β-lactam antibiotics by determining the molecular structure of an antibiotic and its degradation products.

AIM: To study the detection of AmpC-producing Gram-negative bacteria by MALDI-TOF MS and to determine whether the method can be used in clinical practice.

METHODS: A total of 105 strains were detected by determining their phenotypes and sequence analysis. Sixty-nine well-characterized AmpC-producing and 36 non-AmpC-producing strains were studied. The bacteria were incubated in different reaction buffer solutions (10 mM NH4 HCO3 /0.005% sodium dodecyl sulphate at pH 8.0) containing cefotaxime (0.50 mg/mL), ceftazidime (0.25 mg/mL), ceftriaxone (0.50 mg/mL), cefepime (0.50 mg/mL), and cefoxitin (0.25 and 0.50 mg/mL), respectively. The mixture was centrifuged at 13,000 g for 2 min, and the supernatant analysed by MALDI-TOF MS after incubation for 30, 60, 90, 120, and 240 min. Antibiotic hydrolysed and decarboxylated peaks were identified.

FINDINGS: When incubated for 90 min, hydrolysed cefotaxime formed peaks at 434 and 494 Da, and the sensitivity and specificity for detection of AmpC-producing strains were 85.5% (59/69) and 88.9% (32/36). When incubated for 4 h, hydrolysed ceftazidime formed peaks at 563 and 587 Da, and the sensitivity and specificity were 89.9% (62/69) and 94.5% (34/36), respectively. For hydrolysed ceftriaxone (0.5 mg/mL), cefepime (0.5 mg/mL) and two concentrations of cefoxitin (0.25 and 0.5 mg/mL), no peaks amenable to analysis were identified.

CONCLUSION: This study demonstrated that MALDI-TOF MS can rapidly detect AmpC-producing strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app