Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Construction of a high-yield dengue virus by replacing nonstructural proteins 3-4B without increasing virulence.

Producing virus at high yield is critically important for development of whole virion inactivated vaccines or live attenuated vaccines. Most dengue virus (DENV) clinical isolates, however, replicate at low levels in cultured cells, which limits their use for vaccine development. The present study examined differences between low-replicating DENV clinical isolates and high-replicating laboratory strains with the aim of engineering high-yield DENV clinical isolates. Construction of a series of recombinant chimeric viruses derived from a high-replicating laboratory DENV type 4 (DENV-4) H241 strain and a clinical isolate revealed that the NS3-NS4B region of H241 conferred a replication advantage in cultured cells. Furthermore, northern blot analysis revealed that this advantage was due to more efficient synthesis of viral RNA. Importantly, replacement of the NS3-NS4B region of H241 did not increase virulence in mice, suggesting that viral production can be increased safely. This study provided information that will facilitate engineering of safe and high-yield viruses that can be used for vaccine development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app