Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of tumor growth by mouse ROR1 specific antibody in a syngeneic mouse tumor model.

Immunology Letters 2018 January
INTRODUCTION: Immunotherapy with tumor-associated antigens (TAAs) is a potentially powerful approach to eradicate tumor cells. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) plays a crucial role for survival of tumor cells and is overexpressed in various malignancies. In the present study, we developed a syngeneic mouse tumor model to assess anti-tumor effect of mouse ROR1 specific polyclonal antibody (pAb) in vivo.

MATERIALS AND METHODS: Mouse ROR1 specific antibody was produced in rabbit using recombinant ROR1 protein. Tow mouse tumor cell lines, (4T1 and CT26), were transfected with full length mouse ROR1 construct and stable clones were selected and characterized by immunocytochemistry, Western blot and flow cytometry. In vitro and in vivo anti-tumor activities of anti-ROR1 antibody were assessed by XTT and syngeneic BALB/c mouse model, respectively.

RESULTS: We successfully established two mouse ROR1-overexpressing tumor cell lines. The in vitro results indicate that the ROR1pAb did not significantly inhibit growth of ROR1+ cell lines. One of these cell lines (CT26-ROR1) was implanted in syngeneic BALB/c mice to assess anti-ROR1 tumor inhibitory activity in vivo. The tumor size was significantly reduced in mice treated with ROR1 specific pAb.

CONCLUSION: Our results demonstrated for the first time tumor inhibitory effect of mouse ROR1 specific antibody in a syngeneic mouse tumor model. This model is a promising tool for preclinical assessment of ROR1 therapeutics and investigation of the underling molecular mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app