Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Model-based tracking of the bones of the foot: A biplane fluoroscopy validation study.

Measuring foot kinematics using optical motion capture is technically challenging due to the depth of the talus, small bone size, and soft tissue artifact. We present a validation of our biplane X-ray system, demonstrating its accuracy in tracking the foot bones directly. Using an experimental linear/rotary stage we imaged pairs of tali, calcanei, and first metatarsals, with embedded beads, through 30 poses. Model- and bead-based algorithms were employed for semi-automatic tracking. Translational and rotational poses were compared to the experimental stage (a reference standard) to determine registration performance. For each bone, 10 frames per pose were analyzed. Model-based: The resulting overall translational bias of the six bones was 0.058 mm with a precision of ± 0.049 mm. The overall rotational bias of the six bones was 0.42° with a precision of ± 0.41°. Bead-based: the overall translational bias was 0.037 mm with a precision of ± 0.032 mm and for rotation was 0.29° with a precision of ± 0.26°. We validated the accuracy of our system to determine the spatial position and orientation of isolated foot bones, including the talus, calcaneus, and first metatarsal over a range of quasi-static poses. Although the accuracy of dynamic motion was not assessed, use of an experimental stage establishes a reference standard.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app