Add like
Add dislike
Add to saved papers

Boosting bioethanol production from Eucalyptus wood by whey incorporation.

Bioresource Technology 2018 Februrary
The mixture of Eucalyptus globulus wood (EGW) and cheese whey powder (CWP) was proposed for intensification of simultaneous saccharification and fermentation (SSF) at high temperature and solid loadings using the industrial Saccharomyces cerevisiae Ethanol Red® strain. High ethanol concentration (93 g/L), corresponding to 94% ethanol yield, was obtained at 35 °C from 37% of solid mixture using cellulase and β-galactosidase enzymes (24.2 FPU/g and 20.0 U/g, respectively). The use of CWP mixed with pretreated EGW increased the ethanol concentration in 1.5-fold, in comparison with SSF experiments without CWP for both Ethanol Red® and CEN.PK113-7D strains. Moreover, 1.4-fold higher ethanol concentration was obtained with Ethanol Red®, in comparison with CEN.PK113-7D strain. Ethanol Red® strain was genetically engineered for β-galactosidase production in order to advance towards a fully integrated process. This work shows the feasibility of attaining high ethanol concentrations in second generation bioprocesses by a multi-waste valorization approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app