Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The independent loss model with ordered insertions for the evolution of CRISPR spacers.

Today, the CRISPR (clustered regularly interspaced short palindromic repeats) region within bacterial and archaeal genomes is known to encode an adaptive immune system. We rely on previous results on the evolution of the CRISPR arrays, which led to the ordered independent loss model, introduced by Kupczok and Bollback (2013). When focusing on the spacers (between the repeats), new elements enter a CRISPR array at rate θ at the leader end of the array, while all spacers present are lost at rate ρ along the phylogeny relating the sample. Within this model, we compute the distribution of distances of spacers which are present in all arrays in a sample of size n. We use these results to estimate the loss rate ρ from spacer array data for n=2 and n=3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app