Add like
Add dislike
Add to saved papers

Increase in renal erythropoietin receptors in diabetic rats is mainly mediated by hyperglycemia associated with the STAT3/GATA-1 signaling pathway.

Erythropoietin (EPO) produces cytoprotection in many tissues by activating the EPO receptor (EPOR); these effects include anti-oxidative stress and the inhibition of apoptosis in renal tubular cells. Moreover, EPO is clinically used in diabetic patients who suffer from chronic renal disease. However, the effect of hyperglycemia on renal EPOR expression remains unknown. Therefore, we determined the changes in renal EPOR expression in diabetic rats and investigated the role of potential factors using cultured cells. Streptozotocin-induced hyperglycemic rats (STZ rats) treated with insulin or phloridzin to correct hyperglycemia were used to investigate treated with insulin or phloridzin to correct hyperglycemia were used to investigate the EPOR changes. Potential factors, including the transducer and activator of transcription 3 (STAT3) and GATA binding protein 1 (GATA1), were identified in cultured NRK-49F cells after incubation with high glucose (HG) levels to mimic diabetic animals. Renal EPOR expression was reduced by insulin and phloridzin in STZ rats, and hyperglycemia recovered. An increase in EPORs was also reproduced in hyperglycemia-exposed NRK-49F cells and HK-2 cells, which showed a higher expression of STAT3 or GATA1. Furthermore, the application of siRNA specific to STAT3 or GATA1 attenuated the higher expression of EPORs in HG-incubated NRK-49F cells. Moreover, stattic administered at a dose that was sufficient to inhibit STAT3 restored the level of renal EPORs in diabetic rats. Taken together, the expression of renal EPORs is increased by hyperglycemia via the STAT3/GATA1 pathway and has been characterized in both diabetic rats and cultured cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app