Add like
Add dislike
Add to saved papers

Canine neutrophils activate effector mechanisms in response to Leishmania infantum.

Veterinary Parasitology 2017 December 16
Canine leishmaniosis caused by L. infantum is a severe zoonotic disease. Although macrophages are the definitive host cells, neutrophils are the first cells to encounter the parasite soon after its inoculation in the dermis by the phlebotomine vector. To study the interaction of dog neutrophils and L. infantum promastigotes, blood neutrophils were isolated from healthy donors and the infection was established in vitro. In the majority of the dogs, L. infantum was efficiently phagocytized by neutrophils, and oxidative (superoxide production) and non-oxidative (neutrophil elastase exocytosis) intracellular effector mechanisms were activated, but the release of neutrophil extracellular traps was minimized. Furthermore, promastigotes and culture supernatants induced neutrophil migration, but the prior contact with Leishmania inhibits chemotaxis, which might contribute to neutrophil retention at the inoculation site. Neutrophil-parasite interaction resulted in a decrease in parasite viability, although some intracellular promastigotes survive and maintain their proliferative capacity. These findings indicate that dog neutrophils are competent effector cells able to control the initial L. infantum infection. However, some parasites evade intracellular effector mechanisms and can be transferred to the definitive host cell, the macrophage, contributing to the development of canine leishmaniosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app