JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nonchelated Phosphoniomethylidene Complexes of Scandium and Lutetium.

The first phosphoniomethylidene complexes of scandium and lutetium, [LLn(CHPPh3 )X] (L = [MeC(NDIPP)CHC(NDIPP)Me]- ; Ln = Sc, X = Me, I, TfO; Ln = Lu, X = CH2 SiMe3 ), have been synthesized and fully characterized. DFT calculations clearly demonstrate the presence of an allylic Ln, C, P π-type interaction in these complexes. X-ray diffraction indicates that the scandium iodide complex has the shortest Sc-C bond length to date (2.044(5) Å). These phosphoniomethylidene complexes readily convert into the ylide complexes, and the reactivity is affected by both X- anion and Ln3+ ion. The reaction of lutetium complex with imine shows a rapid insertion of imine into the Lu-C(alkylidene) bond. DFT calculations indicate that, although the bonding situation seems similar to that of the scandium analog, the strong negative charge at the alkylidene carbon is not sufficiently screened by one hydrogen in the lutetium complex because of a more ionic bonding, and therefore, the reactivity of the lutetium complex is much higher.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app