Add like
Add dislike
Add to saved papers

Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO 2 anode: Evaluation and mechanistic approach.

Chemosphere 2018 Februrary
Present study investigates the potential of Ti/RuO2 electrode for degradation and mineralization of Ofloxacin (OFLX) antibiotic from synthetic wastewater by electro-oxidation (EO) method, not reported earlier. Effects of various EO parameters such as applied current (I), initial pH, initial OFLX concentration (C0 ) and supporting electrolyte concentration on %OFLX removal efficiency and %TOC removal efficiency were systematically studied and reported. Decay kinetics of OFLX by varying C0 and applied I were also studied. Additionally, mineralization current efficiency and specific energy consumption of OFLX mineralization were evaluated. Moreover, mode of oxidation method involved (direct and/or indirect oxidation) was also explored. Major OFLX transformation products during EO were identified using UPLC-Q-TOF-MS, and possible degradation reaction mechanism was proposed. Furthermore, operating cost analysis was performed to check the economic feasibility of the EO process. The optimum pH and current (I) were found to be ≈6.8 (natural pH of OFLX wastewater) and 1 A, respectively. Mineralization current efficiency decreased from 7.8% to 4.9% with increase in I value from 0.25 to 1 A. ≈80% of OFLX removal in 30 min of electrolysis and 46.3% TOC removal in 240 min of electrolysis at I = 1 A were observed. Pseudo-first-order kinetic model best fitted the experimental data showing R2 value ≈ 0.99 for all the Co and applied I studied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app