Add like
Add dislike
Add to saved papers

Monolithically Integrated Si-on-AlN Mid-Infrared Photonic Chips for Real-Time and Label-Free Chemical Sensing.

Chip-scale chemical sensors were demonstrated using optical waveguides consisting of amorphous silicon (a-Si) and aluminum nitride (AlN). A mid-infrared (mid-IR) transparent AlN thin film was prepared by room-temperature sputtering, which exhibited high Al/N elemental homogeneity. The Si-on-AlN waveguides were fabricated by a complementary metal-oxide-semiconductor process. A sharp fundamental mode and low optical loss of 2.21 dB/cm were obtained. Label-free chemical identification and real-time monitoring were performed by scanning the mode spectrum while the waveguide was exposed to various chemicals. Continuous tracing of heptane and methanol was accomplished by measuring the waveguide intensity attenuation at λ = 2.5-3.0 μm, which included the characteristic -CH and -OH absorptions. The monolithically integrated Si-on-AlN waveguides established a new sensor platform that can operate over a broad mid-IR regime, thus enabling photonic chips for label-free chemical detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app