Add like
Add dislike
Add to saved papers

Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy.

Statistics in Medicine 2018 Februrary 21
Drug-drug interactions (DDIs) are a common cause of adverse drug events (ADEs). The electronic medical record (EMR) database and the FDA's adverse event reporting system (FAERS) database are the major data sources for mining and testing the ADE associated DDI signals. Most DDI data mining methods focus on pair-wise drug interactions, and methods to detect high-dimensional DDIs in medical databases are lacking. In this paper, we propose 2 novel mixture drug-count response models for detecting high-dimensional drug combinations that induce myopathy. The "count" indicates the number of drugs in a combination. One model is called fixed probability mixture drug-count response model with a maximum risk threshold (FMDRM-MRT). The other model is called count-dependent probability mixture drug-count response model with a maximum risk threshold (CMDRM-MRT), in which the mixture probability is count dependent. Compared with the previous mixture drug-count response model (MDRM) developed by our group, these 2 new models show a better likelihood in detecting high-dimensional drug combinatory effects on myopathy. CMDRM-MRT identified and validated (54; 374; 637; 442; 131) 2-way to 6-way drug interactions, respectively, which induce myopathy in both EMR and FAERS databases. We further demonstrate FAERS data capture much higher maximum myopathy risk than EMR data do. The consistency of 2 mixture models' parameters and local false discovery rate estimates are evaluated through statistical simulation studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app