JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prenatal exposure to ketamine in rats: Implications on animal models of schizophrenia.

Schizophrenia is a complex neuropsychiatric disorder characterized by hallucinations, delusions, anhedonia, flat affect and cognitive impairments. The aim of this study was to propose a prenatal treatment with ketamine, a psychedelic drug that acts as a non-competitive inhibitor of glutamate NMDA receptors, as a neurodevelopmental animal model of schizophrenia. The drug was applied (i.m. 60 mg.kg-1  h-1 ) in pregnant Sprague-Dawley rats on gestational Day 14. Offspring behavior was studied on pubertal (4 weeks old) and adult (10 weeks old) stages. Also, hippocampal CA1-CA3 morphology was assessed in adult animals through a Nissl stain. Results showed a disinhibition and hyperactive behavior in pubertal animals exposed to ketamine, followed in adulthood with cognitive impairments, social withdrawal, anxiety, depression, and aggressive-like behaviors. In the hippocampus, a reduction of the CA3 layer thickness was observed, without changes in cell density. These results strongly suggest a robust link between prenatal pharmacologic manipulation of NMDA receptors and schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app