JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Coupling Yeast Golden Gate and VEGAS for Efficient Assembly of the Violacein Pathway in Saccharomyces cerevisiae.

The ability to express non-native pathways in genetically tractable model systems is important for fields such as synthetic biology, genetics, and metabolic engineering. Here we describe a modular and hierarchical strategy to assemble multigene pathways for expression in S. cerevisiae. First, discrete promoter, coding sequence, and terminator parts are assembled in vitro into Transcription Units (TUs) flanked by adapter sequences using "yeast Golden Gate" (yGG), a type IIS restriction enzyme-dependent cloning strategy. Next, harnessing the natural capacity of S. cerevisiae for homologous recombination, TUs are assembled into pathways and expressed using the "Versatile Genetic Assembly System" (VEGAS) in yeast. Coupling transcription units constructed by yGG with VEGAS assembly is a generic and flexible workflow to achieve pathway expression in S. cerevisiae. This protocol describes assembly of a five TU pathway for yeast production of violacein, a pigment derived from Chromobacterium violaceum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app