Add like
Add dislike
Add to saved papers

TRADD mediates the tumor necrosis factor-induced apoptosis of L929 cells in the absence of RIP3.

Scientific Reports 2017 November 24
Receptor-interacting protein kinase 3 (RIP3) is a critical initiator in mediating necroptosis induced by tumor necrosis factor alpha (TNFα) in L929 cells, so knockdown of RIP3 inhibits TNFα-induced L929 cell necroptosis. However, RIP3 knockdown was shown to switch TNFα-induced necroptosis to apoptosis in L929 cells in other studies. Therefore, whether RIP3 knockdown blocks the TNFα-induced death of L929 cells is controversial. In this study, TNFα activated caspase pathway and induced cell death in RIP3 knockdown L929 cells, and the RIP3-independent cell death had been blocked by Z-VAD-FMK (pan-caspase inhibitor) or caspase 8 knockdown, demonstrating that RIP3 knockdown switched TNFα-induced necroptosis to caspase-dependent apoptosis. Although both TNF receptor type 1-associated death domain protein (TRADD) and RIP1 have been reported to mediate TNFα-induced apoptosis, the knockdown of TRADD, but not RIP1, suppressed TNFα-induced activation of the caspase pathway and subsequent apoptosis in RIP3 knockdown L929 cells. In addition, TRADD bound and activated caspase 8 during the RIP3-independent apoptosis process, indicating that TRADD initiates RIP3-independent apoptosis by activating the caspase pathway. Collectively, we identified the target and mechanism underlying RIP3-independent apoptosis and elucidated the coordinated roles of RIP3 and TRADD in mediating the programmed cell death of L929 cells following TNFα stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app