Add like
Add dislike
Add to saved papers

TAT-modified self-assembled cationic peptide nanoparticles as an efficient antibacterial agent.

The increasing emergence of drug resistant pathogenic bacteria poses a great challenge to clinical therapy and a threat to public health. Cationic peptides have received great attention for their unique antibacterial mechanism and ability to combat drug-resistant bacteria. In this study, we designed a TAT-modified cationic peptide PA-28 which self-assembled into nanoparticles of about 150 nm. These nanoparticles showed strong antimicrobial activities against both gram-positive and gram-negative bacteria, including drug-resistant bacteria. They were more potent than the unassembled counterpart peptide nonalysine (K9 ). Their antibacterial mechanism of directly destructing bacterial wall/membrane reduces the possibility of developing bacterial resistance. In vivo anti-infective experiments showed that these nanoparticles were able to penetrate the blood-brain barrier to inhibit bacterial growth in infected brains of rats. In addition, these nanoparticles induced low hemolysis below the minimum inhibitory concentration. Therefore, the peptide designed in this study is a promising and efficient antibacterial agent against bacterial infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app