Add like
Add dislike
Add to saved papers

Ginsenoside Rg3 inhibits colorectal tumor growth via down-regulation of C/EBPβ/NF-κB signaling.

Colorectal cancer (CRC), the third most frequent occurred cancer, is associated with high mortality and extremely poor prognosis. Ginsenoside Rg3 (Rg3), one of the pharmacologically active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effects against several types of cancer growth, including colorectal cancer. However, the detailed molecular mechanisms and particularly the signaling pathways that are decisive in this process are not yet fully elucidated. The present study was carried out to determine the antitumor effects of Rg3 using human colorectal cells in vitro and Xenograft tumor model of human colon cancer in vivo. We found that Rg3 effectively suppressed the proliferation of cancer cells in three human colorectal cancer cell lines (HCT116, HT29, SW480). In addition, intraperitoneal injection of Rg3 for 3 weeks significantly inhibited the growth of xenografts in nude mice. Furthermore, we determined the potential underlying mechanisms for these actions. Treatment with Rg3 significantly inhibited the transactivation of C/EBPβ and NF-κB, as well as the association of C/EBPβ with p65-NFκB in nucleus. However, when SW-480 cells were co-transfected with C/EBPβ, or pretreatment with TNFα, Rg3 failed to inhibit tumor growth. Taken together, our results revealed a robust anti-tumor effect of Rg3, which is mediated by inhibition of C/EBPβ/NF-κB signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app