Add like
Add dislike
Add to saved papers

TNF-α Regulates Mast Cell Functions by Inhibiting Cell Degranulation.

BACKGROUND/AIMS: The aim of this study was to investigate the involvement of inducible co-stimulatory ligand (ICOSL) expression in stimulation of mast cells (MCs) by TNF-α and the ability of TNF-α stimulation of MCs to influence CD4+ T cell differentiation and function. The mechanisms underlying TNF-α stimulation of MCs were also explored.

METHODS: Mast cells and CD4+ T cells were prepared from C57BL/6 mice (aged 6-8 weeks). ICOSL expression by MCs was measured by real-time PCR and flow cytometry, and levels of IL-4, IL-10 and IFN-γ were measured by ELISA.

RESULTS: ICOSL expression by MCs was increased by TNF-α stimulation, and resulted in interaction with CD4+ T cells. The IL-4 and IL-10 levels in the co-culture system increased, while IFN-γ levels decreased. Furthermore, CD4+CD25+Foxp3+ T cell proliferation was induced by co-culture with TNF-α-stimulated MCs. The mechanism by which TNF-α stimulated MCs was dependent on the activation of the MAPK signaling pathway.

CONCLUSION: TNF-α upregulated the expression of ICOSL on mast cells via a mechanism that is dependent on MAPK phosphorylation. TNF-α-treated MCs promoted the differentiation of regulatory T cells and induced a shift in cytokine expression from a Th1 to a Th2 profile by up-regulation ICOSL expression and inhibition of MC degranulation. Our study reveals a novel mechanism by which mast cells regulate T cell function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app