Add like
Add dislike
Add to saved papers

3D correction over 2years with anterior vertebral body growth modulation: A finite element analysis of screw positioning, cable tensioning and postoperative functional activities.

BACKGROUND: Anterior vertebral body growth modulation is a fusionless instrumentation to correct scoliosis using growth modulation. The objective was to biomechanically assess effects of cable tensioning, screw positioning and post-operative position on tridimensional correction.

METHODS: The design of experiments included two variables: cable tensioning (150/200N) and screw positioning (lateral/anterior/triangulated), computationally tested on 10 scoliotic cases using a personalized finite element model to simulate spinal instrumentation, and 2years growth modulation with the device. Dependent variables were: computed Cobb angles, kyphosis, lordosis, axial rotation and stresses exerted on growth plates. Supine functional post-operative position was simulated in addition to the reference standing position to evaluate corresponding growth plate's stresses.

FINDINGS: Simulated cable tensioning and screw positioning had a significant impact on immediate and after 2years Cobb angle (between 5°-11°, p<0.01). Anterior screw positioning significantly increased kyphosis after 2years (6°-8°, p=0.02). Triangulated screw positioning did not significantly impact axial rotation but significantly reduced kyphosis (8°-10°, p=0.001). Growth plates' stresses were increased by 23% on the curve's convex side with cable tensioning, while screw positioning rather affected anterior/posterior distributions. Supine position significantly affected stress distributions on the apical vertebra compared to standing position (respectively 72% of compressive stresses on convex side vs 55%).

INTERPRETATION: This comparative numerical study showed the biomechanical possibility to adjust the fusionless instrumentation parameters to improve correction in frontal and sagittal planes, but not in the transverse plane. The convex side stresses increase in the supine position may suggest that growth modulation could be accentuated during nighttime.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app