Add like
Add dislike
Add to saved papers

Critical flux investigation in treating o/w emulsion by TiO 2 /Al 2 O 3 -PVDF UF membrane.

A standard transmembrane pressure (TMP) step method has been used in membrane fouling assessment in tube ultrafiltration (UF) membrane system treating oil water (o/w) emulsion operated at constant TMP. Three flux reduction curve with different o/w concentration based on TMP variation were concluded by experiment, then, to describe fouling behavior and identify the occurrence of fouling in the so-called critical flux. Furthermore, sub-critical and super-critical flux experiment with a long time was determined, and zero rate of flux reduction (dF/dt) was never found during the whole trial period, indicating that critical flux in o/w UF process with its strict definition could not be defined in this paper. However, quasi-critical flux exists, under which the pollution rate was very slow. Moreover, a high-efficiency four steps cleaning method: mechanic scraping, pure water wash, pure water reverse wash, and dosing cleaning, was explored. It concluded that critical flux in real o/w UF system determined by TMP-step method can be used to predict long-term critical behavior with useful data on fouling propensity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app