Add like
Add dislike
Add to saved papers

Crystallization Mechanism and Charge Carrier Transport in MAPLE-Deposited Conjugated Polymer Thin Films.

Although spin casting and chemical surface reactions are the most common methods used for fabricating functional polymer films onto substrates, they are limited with regard to producing films of certain morphological characteristics on different wetting and nonwetting substrates. The matrix-assisted pulsed laser evaporation (MAPLE) technique offers advantages with regard to producing films of different morphologies on different types of substrates. Here, we provide a quantitative characterization, using X-ray diffraction and optical methods, to elucidate the additive growth mechanism of MAPLE-deposited poly(3-hexylthiophene) (P3HT) films on substrates that have undergone different surface treatments, enabling them to possess different wettabilities. We show that MAPLE-deposited films are composed of crystalline phases, wherein the overall P3HT aggregate size and crystallite coherence length increase with deposition time. A complete pole figure constructed from X-ray diffraction measurements reveals that in these MAPLE-deposited films, there exist two distinct crystallite populations: (i) highly oriented crystals that grow from the flat dielectric substrate and (ii) misoriented crystals that preferentially grow on top of the existing polymer layers. The growth of the highly oriented crystals is highly sensitive to the chemistry of the substrate, whereas the effect of substrate chemistry on misoriented crystal growth is weaker. The use of a self-assembled monolayer to treat the substrate greatly enhances the population and crystallite coherence length at the buried interfaces, particularly during the early stage of deposition. The evolution of the in-plane carrier mobilities during the course of deposition is consistent with the development of highly oriented crystals at the buried interface, suggesting that this interface plays a key role toward determining carrier transport in organic thin-film transistors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app