Add like
Add dislike
Add to saved papers

Validation of X-ray Wavefunction Refinement.

In this work, the quality of the electron density in crystals reconstructed by the multipolar model (MM) and by X-ray wavefunction refinement (XWR) is tested on a set of high-resolution X-ray diffraction data sets of four amino acids and six tripeptides. It results in the first thorough validation of XWR. Agreement statistics, figures of merit, residual- and deformation-density maps, as well as atomic displacement parameters are used to measure the quality of the reconstruction relative to the measured structure factors. Topological analysis of the reconstructed density is carried out to obtain atomic and bond-topological properties, which are subsequently compared to the values derived from benchmarking periodic DFT geometry optimizations. XWR is simultaneously in better agreement than the MM with both benchmarking theory and the measured diffraction pattern. In particular, the obvious problems with the description of polar bonds in the MM are significantly reduced by using XWR. Similarly, modeling of electron density in the vicinity of hydrogen atoms with XWR is visibly improved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app