JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Two-stage identification of SNP effects on dynamic poplar growth.

Plant Journal 2018 January
This project proposes an approach to identify significant single nucleotide polymorphism (SNP) effects, both additive and dominant, on the dynamic growth of poplar in diameter and height. The annual changes in yearly phenotypes based on regular observation periods are considered to represent multiple responses. In total 156,362 candidate SNPs are studied, and the phenotypes of 64 poplar trees are recorded. To address this ultrahigh dimensionality issue, this paper adopts a two-stage approach. First, the conventional genome-wide association studies (GWAS) and the distance correlation sure independence screening (DC-SIS) methods (Li et al., 2012) were combined to reduce the model dimensions at the sample size; second, a grouped penalized regression was applied to further refine the model and choose the final sparse SNPs. The multiple response issue was also carefully addressed. The SNP effects on the dynamic diameter and height growth patterns of poplar were systematically analyzed. In addition, a series of intensive simulation studies was performed to validate the proposed approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app