Add like
Add dislike
Add to saved papers

Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs.

Animal Genetics 2018 Februrary
Intramuscular fat (IMF) content is a key aspect of pork quality. Elucidation of intramuscular adipocyte regulation mechanisms is important for improving IMF content. Intramuscular adipocytes are dispersed among muscle fibers, so they are inclined to be affected by muscle-derived factors. Interleukin-15 is a major muscle-secreted factor. In this study, the genetic and physiological impacts of IL15 on adipogenesis is investigated. The promoter region of IL15 was scanned by comparative sequencing using two DNA pools of high- and low-IMF individuals. Two SNPs, c.-342C>T (ss2137497757) and c.-334G>A (ss2137497756) (the translation start site is designated as +1), were identified with reverse allele distribution in these two groups. Genotyping by allele-specific PCR revealed that the two SNPs were completely linked. The IMF content of TA/TA individuals was lower than that for CG/CG ones, whereas the IL15 expression level was higher in T-A/T-A individuals. Luciferase assaying also revealed that the T-A haplotype promoter had higher transcription activity. Meanwhile, the effect of interleukin-15 on adipocyte differentiation was further assessed in vitro. Results showed that interleukin-15 suppressed preadipocyte proliferation in a dose-dependent manner. The cell cycle of preadipocytes was arrested, and apoptosis was induced. Oil Red O staining and triglyceride quantification indicated that adipocyte differentiation was also inhibited by interleukin-15. The mRNA levels of PPARG and FABP4 decreased markably upon interleukin-15 treatment. Taken together, we identified two completely linked SNPs in the porcine IL15 promoter region that could alter IL15 transcription activity. As interleukin-15 can inhibit porcine adipocyte differentiation, these promoter mutations could affect IMF deposition by producing differential levels of muscle-derived interleukin-15.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app