Add like
Add dislike
Add to saved papers

How Does Oyster Shell Immobilize Cadmium?

The exact mechanism of cadmium (Cd) immobilization by oyster shell (OS) has not been reported. The effect of OS on Cd immobilization and the exact mechanism should be known before applying remediation technology using OS to Cd contaminated soils. Therefore, the objective of this study was to elucidate the mechanism of Cd immobilization by OS. Three grams of OS (< 0.84 mm) was reacted with 30 mL of 0-3.56 mg Cd L-1 solution at 25 °C for 48 h. Cadmium adsorption increased with increasing initial concentration of Cd in solution. The X-ray diffraction patterns clearly demonstrated that precipitation of CdCO3 did not take place in suspensions of OS after reacting with up to 3.56 mol Cd L-1 . Interestingly, we found formation of Ca0.67 Cd0.33 CO3 crystalline in suspension of OS after reacting with maximum initial Cd concentrations. Precipitation and chemisorption might contribute to Cd immobilization together. However, we feel confident that chemisorption is the major mechanism by which Cd immobilization occurs with OS. In conclusion, OS could be an effective bioadsorbent to immobilize Cd through formation of geochemically stable Cd mineral.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app