Add like
Add dislike
Add to saved papers

Optical spin transfer and spin-orbit torques in thin film ferromagnets.

Physical Review. B 2017 August
We study the optically induced torques in thin film ferromagnetic layers under excitation by circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a 4-band model. In the absence of Rashba spin-orbit coupling, we derive an analytic expression for the optical torques, revealing the conditions under which the torque is mostly derived from optical spin transfer torque (i.e. when the torque is along the direction of optical angular momentum), versus when the torque is derived from the inverse Faraday effect (i.e. when the torque is perpendicular to the optical angular momentum). We find the optical spin transfer torque dominates provided that the excitation energy is far away from band edge transitions, and the magnetic exchange splitting is much greater than the lifetime broadening. For the case with large Rashba spin-orbit coupling and out-of-plane magnetization, we find the torque is generally perpendicular to the photon angular momentum and is ascribed to an optical Edelstein effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app