Add like
Add dislike
Add to saved papers

Development and validation of scFv-conjugated affinity silk protein for specific detection of carcinoembryonic antigen.

Scientific Reports 2017 November 23
The production costs for monoclonal antibodies (MAbs) utilized in medical diagnostic kits are inevitably high because the MAbs are mostly obtained from hybridoma cell culture. Here, we report the development and validation of a novel affinity silk protein produced by transgenic silkworm technology as a possible alternative diagnostic tool for cancers. We generated a transgenic silkworm expressing a cDNA construct containing fibroin L-chain fused to a single-chain variable fragment (scFv) derived from a MAb against carcinoembryonic antigen (CEA). The transgenic cocoons were dissolved in aqueous lithium bromide solution, applied to 96-well plates, and analysed by enzyme-linked immunosorbent assay. The scFv-conjugated affinity silk protein specifically recognized CEA as well as the parental MAb. The binding activity was retained after several months of storage in coated plates or concentrated solution. Thus, the scFv-conjugated affinity silk protein provides a potentially useful alternative to conventional MAbs in medical diagnostic kits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app