Add like
Add dislike
Add to saved papers

Polytene Chromosome Structure and Somatic Genome Instability.

Polytene chromosomes have for 80 years provided the highest resolution view of interphase genome structure in an animal cell nucleus. These chromosomes represent the normal genomic state of nearly all Drosophila larval and many adult cells, and a better understanding of their striking banded structure has been sought for decades. A more recently appreciated characteristic of Drosophila polytene cells is somatic genome instability caused by unfinished replication (UR). Repair of stalled forks generates enough deletions in polytene salivary gland cells to alter 10%-90% of the DNA strands within more than 100 UR regions comprising 20% of the euchromatic genome. We accurately map UR regions and show that most approximate large polytene bands, indicating that replication forks frequently stall near band boundaries in late S phase. Chromosome conformation capture has recently identified dense topologically associated domains (TADs) in many genomes and most UR bands are similar or slightly smaller than a cognate Drosophila TAD. We argue that bands serve the evolutionarily ancient function of coordinating genome replication with local gene activity. We also discuss the relatively recent evolution of polyteny and somatic instability in Diptera and propose that these processes helped propel the amazing success of two-winged flies in becoming the most ecologically diverse insect group, with 200 times the number of species as mammals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app