Add like
Add dislike
Add to saved papers

Intramuscular administration potentiates extended dwell time of mesenchymal stromal cells compared to other routes.

Cytotherapy 2018 Februrary
BACKGROUND: Mesenchymal stromal cells (MSCs) offer great potential for diverse clinical applications. However, conventional systemic infusion of MSCs limits their therapeutic benefit, since intravenously (IV) infused cells become entrapped in the lungs where their dwell time is short.

METHODS: To explore possible alternatives to IV infusion, we used in vivo optical imaging to track the bio-distribution and survival of 1 million bioluminescent MSCs administered IV, intraperitoneally (IP), subcutaneously (SC) and intramuscularly (IM) in healthy athymic mice.

RESULTS: IV-infused MSCs were undetectable within days of administration, whereas MSCs implanted IP or SC were only detected for 3 to 4 weeks. In contrast, MSCs sourced from human umbilical cord matrix or bone marrow survived more than 5 months in situ when administered IM. Long-term survival was optimally achieved using low passage cells delivered IM. However, MSCs could undergo approximately 30 doublings before their dwell time was compromised. Cryo-preserved MSCs administered IM promptly after thaw were predominantly cleared after 3 days, whereas equivalent cells cultured overnight prior to implantation survived more than 3 months.

DISCUSSION: The IM route supports prolonged cell survival of both neo-natal and adult-derived MSCs, although short-term MSC survival was comparable between all tested routes up to day 3. IM implantation presents a useful alternative to achieve clinical benefits from prolonged MSC dwell time at a homeostatic implant site and is a minimally invasive delivery route suitable for many applications. However, optimized thaw protocols that restore full biological potential of cryo-preserved MSC therapies prior to implantation must be developed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app