Add like
Add dislike
Add to saved papers

BCFA-enriched vernix-monoacylglycerol reduces LPS-induced inflammatory markers in human enterocytes in vitro.

BackgroundExcess vernix caseosa produced by the fetal skin appears as particles suspended in the amniotic fluid in late gestation, is swallowed by the fetus, and is found throughout the newborn gastrointestinal tract as the first organisms are arriving to colonize the gut. Lipid-rich vernix contains an unusually high 29% branched chain fatty acids (BCFA). BCFAs reduce the incidence of necrotizing enterocolitis in an animal model, and were recently found predominantly in the sn-2 position of human milk triacylglycerols. Nothing is known about the influence of vernix BCFA on proinflammatory markers in human enterocytes.MethodsWe investigated the effect of vernix-monoacylglycerides (MAGs) (enriched with 30% BCFA) on interleukin (IL)-8 and NF-κB production in a human intestinal epithelial cell line (Caco-2). Caco-2 cells were pretreated with vernix-MAG or vernix-free fatty acid (FFA) prior to lipopolysaccharide (LPS) activation.ResultsBoth vernix-MAG and vernix-FFA increased cell BCFA and eliminated an LPS-induced 20% reduction in cell viability. In stimulated Caco-2 cells, vernix-MAG was more effective than vernix-FFA in suppressing IL-8 and NF-κB. Activated vernix-MAG-treated cells expressed less of the cell-surface Toll-like receptor4 (TLR-4) compared with controls.ConclusionThis is the first study to show the reduction of proinflammatory markers in human cells mediated by BCFA-MAG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app