Add like
Add dislike
Add to saved papers

Theoretical investigation of rotationally inelastic collisions of CH(X 2 Π) with hydrogen atoms.

We report calculations of state-to-state cross sections for collision-induced rotational transitions of CH(X2 Π) with atomic hydrogen. These calculations employed the four adiabatic potential energy surfaces correlating CH(X2 Π) + H(2 S), computed in this work through the multi-reference configuration interaction method [MRCISD + Q(Davidson)]. Because of the presence of deep wells on three of the potential energy surfaces, the scattering calculations were carried out using the quantum statistical method of Manolopoulos and co-workers [Chem. Phys. Lett. 343, 356 (2001)]. The computed cross sections included contributions from only direct scattering since the CH2 collision complex is expected to decay predominantly to C + H2 . Rotationally energy transfer rate constants were computed for this system since these are required for astrophysical modeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app