Add like
Add dislike
Add to saved papers

Engineered Biomolecular Recognition of RDX by Using a Thermostable Alcohol Dehydrogenase as a Protein Scaffold.

There are many biotechnology applications that would benefit from simple, stable proteins with engineered biomolecular recognition. Here, we explored the hypothesis that a thermostable alcohol dehydrogenase (AdhD from Pyrococcus furiosus) could be engineered to bind a small molecule instead of a cofactor or molecules involved in the catalytic transition state. We chose the explosive molecule 1,3,5-trinitro-1,3,5-triazine (royal demolition explosive, RDX) as a proof-of-concept. Its low solubility in water was exploited for immobilization for biopanning by using ribosome display. Docking simulations were used to identify two potential binding sites in AdhD, and a randomized library focused on tyrosine or serine mutations was used to determine that RDX was binding in the substrate binding pocket of the enzyme. A fully randomized binding pocket library was selected, and affinity maturation by error-prone PCR led to the identification of a mutant (EP-16) that gained the ability to bind RDX with an affinity of (73±11) μm. These results underscore the way in which thermostable enzymes can be useful scaffolds for expanding the biomolecular recognition toolbox.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app